Crate criterion_plot
source · [−]Expand description
Criterion’s plotting library.
WARNING This library is criterion’s implementation detail and there no plans to stabilize it. In other words, the API may break at any time without notice.
Examples
- Simple “curves” (based on
simple.dem
)
use itertools_num::linspace;
use criterion_plot::prelude::*;
let ref xs = linspace::<f64>(-10., 10., 51).collect::<Vec<_>>();
Figure::new()
.configure(Key, |k| {
k.set(Boxed::Yes)
.set(Position::Inside(Vertical::Top, Horizontal::Left))
})
.plot(LinesPoints {
x: xs,
y: xs.iter().map(|x| x.sin()),
},
|lp| {
lp.set(Color::DarkViolet)
.set(Label("sin(x)"))
.set(LineType::Dash)
.set(PointSize(1.5))
.set(PointType::Circle)
})
.plot(Steps {
x: xs,
y: xs.iter().map(|x| x.atan()),
},
|s| {
s.set(Color::Rgb(0, 158, 115))
.set(Label("atan(x)"))
.set(LineWidth(2.))
})
.plot(Impulses {
x: xs,
y: xs.iter().map(|x| x.atan().cos()),
},
|i| {
i.set(Color::Rgb(86, 180, 233))
.set(Label("cos(atan(x))"))
})
.draw() // (rest of the chain has been omitted)
- error bars (based on Julia plotting tutorial)
use std::f64::consts::PI;
use itertools_num::linspace;
use rand::Rng;
use criterion_plot::prelude::*;
fn sinc(mut x: f64) -> f64 {
if x == 0. {
1.
} else {
x *= PI;
x.sin() / x
}
}
let ref xs_ = linspace::<f64>(-4., 4., 101).collect::<Vec<_>>();
// Fake some data
let ref mut rng = rand::thread_rng();
let xs = linspace::<f64>(-4., 4., 13).skip(1).take(11);
let ys = xs.map(|x| sinc(x) + 0.05 * rng.gen::<f64>() - 0.025).collect::<Vec<_>>();
let y_low = ys.iter().map(|&y| y - 0.025 - 0.075 * rng.gen::<f64>()).collect::<Vec<_>>();
let y_high = ys.iter().map(|&y| y + 0.025 + 0.075 * rng.gen::<f64>()).collect::<Vec<_>>();
let xs = linspace::<f64>(-4., 4., 13).skip(1).take(11);
let xs = xs.map(|x| x + 0.2 * rng.gen::<f64>() - 0.1);
Figure::new()
.configure(Axis::BottomX, |a| {
a.set(TicLabels {
labels: &["-π", "0", "π"],
positions: &[-PI, 0., PI],
})
})
.configure(Key,
|k| k.set(Position::Outside(Vertical::Top, Horizontal::Right)))
.plot(Lines {
x: xs_,
y: xs_.iter().cloned().map(sinc),
},
|l| {
l.set(Color::Rgb(0, 158, 115))
.set(Label("sinc(x)"))
.set(LineWidth(2.))
})
.plot(YErrorBars {
x: xs,
y: &ys,
y_low: &y_low,
y_high: &y_high,
},
|eb| {
eb.set(Color::DarkViolet)
.set(LineWidth(2.))
.set(PointType::FilledCircle)
.set(Label("measured"))
})
.draw() // (rest of the chain has been omitted)
- Candlesticks (based on
candlesticks.dem
)
use criterion_plot::prelude::*;
use rand::Rng;
let xs = 1..11;
// Fake some data
let mut rng = rand::thread_rng();
let bh = xs.clone().map(|_| 5f64 + 2.5 * rng.gen::<f64>()).collect::<Vec<_>>();
let bm = xs.clone().map(|_| 2.5f64 + 2.5 * rng.gen::<f64>()).collect::<Vec<_>>();
let wh = bh.iter().map(|&y| y + (10. - y) * rng.gen::<f64>()).collect::<Vec<_>>();
let wm = bm.iter().map(|&y| y * rng.gen::<f64>()).collect::<Vec<_>>();
let m = bm.iter().zip(bh.iter()).map(|(&l, &h)| (h - l) * rng.gen::<f64>() + l)
.collect::<Vec<_>>();
Figure::new()
.set(BoxWidth(0.2))
.configure(Axis::BottomX, |a| a.set(Range::Limits(0., 11.)))
.plot(Candlesticks {
x: xs.clone(),
whisker_min: &wm,
box_min: &bm,
box_high: &bh,
whisker_high: &wh,
},
|cs| {
cs.set(Color::Rgb(86, 180, 233))
.set(Label("Quartiles"))
.set(LineWidth(2.))
})
// trick to plot the median
.plot(Candlesticks {
x: xs,
whisker_min: &m,
box_min: &m,
box_high: &m,
whisker_high: &m,
},
|cs| {
cs.set(Color::Black)
.set(LineWidth(2.))
})
.draw() // (rest of the chain has been omitted)
- Multiaxis (based on
multiaxis.dem
)
use std::f64::consts::PI;
use itertools_num::linspace;
use num_complex::Complex;
use criterion_plot::prelude::*;
fn tf(x: f64) -> Complex<f64> {
Complex::new(0., x) / Complex::new(10., x) / Complex::new(1., x / 10_000.)
}
let (start, end): (f64, f64) = (1.1, 90_000.);
let ref xs = linspace(start.ln(), end.ln(), 101).map(|x| x.exp()).collect::<Vec<_>>();
let phase = xs.iter().map(|&x| tf(x).arg() * 180. / PI);
let magnitude = xs.iter().map(|&x| tf(x).norm());
Figure::new().
set(Title("Frequency response")).
configure(Axis::BottomX, |a| a.
configure(Grid::Major, |g| g.
show()).
set(Label("Angular frequency (rad/s)")).
set(Range::Limits(start, end)).
set(Scale::Logarithmic)).
configure(Axis::LeftY, |a| a.
set(Label("Gain")).
set(Scale::Logarithmic)).
configure(Axis::RightY, |a| a.
configure(Grid::Major, |g| g.
show()).
set(Label("Phase shift (°)"))).
configure(Key, |k| k.
set(Position::Inside(Vertical::Top, Horizontal::Center)).
set(Title(" "))).
plot(Lines {
x: xs,
y: magnitude,
}, |l| l.
set(Color::DarkViolet).
set(Label("Magnitude")).
set(LineWidth(2.))).
plot(Lines {
x: xs,
y: phase,
}, |l| l.
set(Axes::BottomXRightY).
set(Color::Rgb(0, 158, 115)).
set(Label("Phase")).
set(LineWidth(2.))).
draw(). // (rest of the chain has been omitted)
- Filled curves (based on
transparent.dem
)
use std::f64::consts::PI;
use std::iter;
use itertools_num::linspace;
use criterion_plot::prelude::*;
let (start, end) = (-5., 5.);
let ref xs = linspace(start, end, 101).collect::<Vec<_>>();
let zeros = iter::repeat(0);
fn gaussian(x: f64, mu: f64, sigma: f64) -> f64 {
1. / (((x - mu).powi(2) / 2. / sigma.powi(2)).exp() * sigma * (2. * PI).sqrt())
}
Figure::new()
.set(Title("Transparent filled curve"))
.configure(Axis::BottomX, |a| a.set(Range::Limits(start, end)))
.configure(Axis::LeftY, |a| a.set(Range::Limits(0., 1.)))
.configure(Key, |k| {
k.set(Justification::Left)
.set(Order::SampleText)
.set(Position::Inside(Vertical::Top, Horizontal::Left))
.set(Title("Gaussian Distribution"))
})
.plot(FilledCurve {
x: xs,
y1: xs.iter().map(|&x| gaussian(x, 0.5, 0.5)),
y2: zeros.clone(),
},
|fc| {
fc.set(Color::ForestGreen)
.set(Label("μ = 0.5 σ = 0.5"))
})
.plot(FilledCurve {
x: xs,
y1: xs.iter().map(|&x| gaussian(x, 2.0, 1.0)),
y2: zeros.clone(),
},
|fc| {
fc.set(Color::Gold)
.set(Label("μ = 2.0 σ = 1.0"))
.set(Opacity(0.5))
})
.plot(FilledCurve {
x: xs,
y1: xs.iter().map(|&x| gaussian(x, -1.0, 2.0)),
y2: zeros,
},
|fc| {
fc.set(Color::Red)
.set(Label("μ = -1.0 σ = 2.0"))
.set(Opacity(0.5))
})
.draw()
.ok()
.and_then(|gnuplot| {
gnuplot.wait_with_output().ok().and_then(|p| String::from_utf8(p.stderr).ok())
}));
Modules
Coordinate axis
“Candlestick” plots
Simple “curve” like plots
Error bar plots
Filled curve plots
Gridline
Key (or legend)
A collection of the most used traits, structs and enums
Generic constructors for newtypes
Traits
Structs
Box width for box-related plots: bars, candlesticks, etc
Plot container
A font name
The size of a font
The key or legend
Plot label
Width of the lines
Fill color opacity
Output file path
Size of the points
Axis scale factor
Figure size
Labels attached to the tics of an axis
Figure title
Structure representing a gnuplot version number.
Enums
A pair of axes that define a coordinate system
A coordinate axis
Color
Grid line
Line type
Point type
Axis range
Axis scale
Output terminal
Possible errors when parsing gnuplot’s version string
Functions
Returns gnuplot
version